Journal of Organometallic Chemistry, 385 (1990) 247–254 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20574

Synthesis and properties of germa-y-lactones

Norihiro Kakimoto *, Tohru Yoshiwara,

Asai Germanium Research Institute, 1-6-4, Izumihoncho, Komae-shi, Tokyo 201 (Japan)

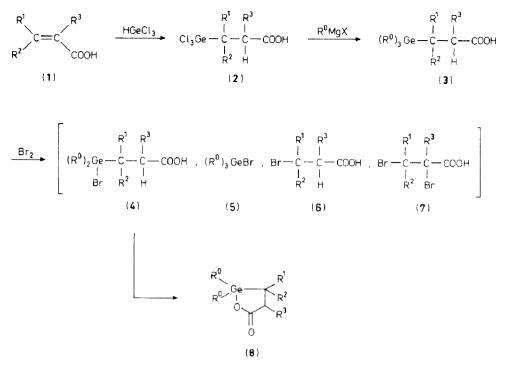
Mitsuo Akiba * and Yoshiharu Ishido

Tokyo College of Pharmacy, 1432-1, Horinouchi, Hachioji-shi, Tokyo 192-03 (Japan) (Received July 3rd, 1989; in revised form September 28th, 1989)

Abstract

Trialkylgermylpropanoic acids treated with 1 mole of bromine afford the monobromopropanoic acids, which are converted into the corresponding germa- γ -lactones in good yields by hydrolysis. The physical, chemical, and biological properties of these compounds are described.

Introduction


The 4-substituted butanolides (γ -lactones) occur in a number of natural products and insect sex pheromones [1]. Furthermore, these compounds are useful and versatile intermediates for the synthesis of biologically useful compounds [2].

As part of our study of synthetic biologically active organogermanium compounds, we herein report a simple method for the novel synthesis of germa- γ -lactones (8), whose physical and chemical properties, and bioactivity were compared with those of the γ -lactones.

Results and discussion

The synthetic route to 8 is shown in Scheme 1.

The α,β -unsaturated carboxylic acids (1) were treated with trichlorogermane to give the trichlorogermyl adducts (2) [3], which in turn were transformed into γ -trialkylgermylpropanoic acids (3) by Grignard reagents in 63-84% yields. The reaction of (3a-e) with 1 mole of bromine in chloroform at 0°C afforded the monobrominated germylpropanoic acids (4a-e) in good yields except for 4d. In the case of 3f,g ($\mathbb{R}^1 = \mathbb{C}_6 \mathbb{H}_5$), 4f or 4g was not obtained but 6f or 6g was produced as a sole product isolated. The bromination of 3f was monitored by ¹H NMR spectroscopy which revealed the signal of the trimethyl moiety due to trimethylgermyl

Scheme 1

Table 1

bromide (5) at 0.83 ppm in addition to that of 3-bromo-3-phenylpropanoic acid (6f). The Ge-C bonds in germacyclobutanes and alkenylgermanes are readily cleaved by iodine at 0° C in the absence of catalyst [4]. Thus, bromine, being more reactive than iodine, readily and exclusively cleaves Ge-C (benzyl) bonds. On treatment with an excess of bromine, on the other hand, 3c (or 3d) did not give 4c (4d) but 7c (or 7d) as the sole product. Thus, 7 should form via 4 during the bromination of 3. Table 1 shows the results of the bromination of 3. Compounds 4c was treated with an excess of bromine and did indeed give the expected compound, 7c. In light of the

3	R ⁰	R ¹	R ²	R ³	Reaction conditions			Product yield (%)		
					Br ₂ (mol)	temp. (°C)	time (h)	4	6	7
a	CH3	Н	н	Н	1	0	1	87		
b	CH ₃	CH ₃	Н	Н	1	0	1	83		
с	CH ₃	Н	Н	CH ₃	1	0	1	80	_	
	-			5	3	0	5		_	80
d	CH ₃	CH ₃	Н	CH ₃	1	0	2	39		40
	-	-		-	3	0	5			72
e	CH ₃	CH3	CH ₃	Н	1	0	1	80	_	-
f	CH ₃	C ₆ H ₅	Н	Н	1	0	1		60	
g	CH ₃	C ₆ H ₅	Н	CH ₃	1	0	1	-	70	
h	$C_2 H_5$	н	н	н	1	0	1	53	_	-

Reaction of	trialkylgermylpropanoid	: acids (3)	with bromine	in chloroform

$$4 \xrightarrow{\text{Br}_2} \text{Me}_2\text{Ge} \xrightarrow{\text{C}} C \xrightarrow{\text{C}} C\text{OOH}} \xrightarrow{-\text{Me}_2\text{GeBr}_2} \xrightarrow{\text{R}^1} C = C \xrightarrow{\text{R}^3} COOH} \xrightarrow{\text{Br}_2} 7$$
(9)
Scheme 2

above results, we propose a mechanism in which bromination of 4 gives the α -bromocarboxylic acid intermediate 9, which undergoes β -elimination [5] to the α,β -unsaturated carboxylic acid followed by re-bromination to give 7 (Scheme 2).

Treatment of 4 with water in carbon tetrachloride at room temperature gives germa- γ -lactone (8) in good yields. The molecular structure of 8 thus obtained was determined by elemental analysis and spectral data. The results of the preparation of 8 are listed in Table 2.

The IR spectrum of 8 generally shows an absorption band attributable to the carbonyl group of germa- γ -lactone at an much lower frequency (1620-1645 cm⁻¹) than that of the γ -lactone. This remarkable feature in the IR spectrum of 8 suggests the presence of σ - π conjugation [6] between the Ge-O bond and the C=O double bond in the structure of 8. However, the cause is not clear. 8a undergoes selective attack of methylmagnesium bromide at the γ -position to afford trimethyl-germylpropanoic acid (3a) in 76% yield.

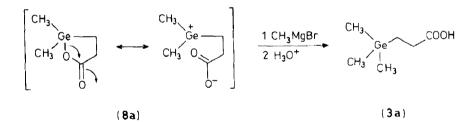
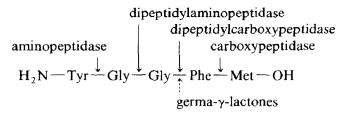
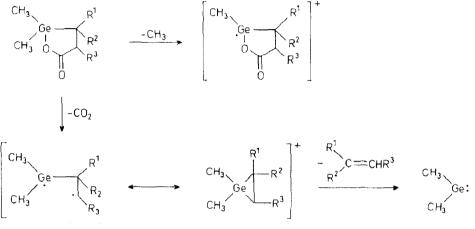



Table 2

Preparation of 4,4-dialkyl-4-germa- γ -butyrolactones (8) $R^0 \xrightarrow{K} R^0$


8		(8)						
	Molecular formula "	Yield	M.p. (°C)	$IR (cm^{-1})$		MS		
		(%)		v(C=O)	v(Ge-C)	$(M^+ m/z)$		
a	C ₅ H ₁₀ GeO ₂	74	174-175	1645	640	177		
b	$C_6H_{12}GeO_2$	69	145-147	1640	640	191		
c	$C_6H_{12}GeO_2$	68	150-152	1630	630	191		
d	$C_7 H_{14} GeO_2$	85	120	1620	635	205		
е	$C_7H_{14}GeO_2$	85	141	1625	620	205		
h	C ₇ H ₁₄ GeO ₂	93	116-117	1623	602	205		

^a Elemental analyses of these compounds were within acceptable limits.

Enkephalin

Fig. 1. Enkephalin degrading enzymes and germa-y-lactones as their inhibitors.

Scheme 3

The mass spectra of 8a-e generally show the typical peaks of $[M^+ - CH_3]$, $[M^+ - CO_2]$, $(CH_3)_2$ Ge, in addition to those of the molecular ion, M^+ (Scheme 3). Notably, the very strong peak of $(CH_3)_2$ Ge was observed as a base peak, and suggests the existence of the germylene [7] as an reaction intermediate in the pyrolysis of 8.

Of these compounds, 4,4-dimethyl-4-germa- γ -butyrolactone (8a) strongly inhibits dipeptidylcarboxypeptidase degradation of enkephalins – compounds which show morphine-like activity. This result suggests that 8a may be as effective in the physiological pain-regulation system in vivo. Investigation of other biological activities of these compounds is now being carried out.

Experimental

All the melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. IR spectra were recorded with a Hitachi 260-10. ¹H-NMR spectra were determined with a Varian EM-390 spectrometer using tetramethylsilane as an internal standard. Mass spectra were recorded with a Hitachi M-80 mass spectrometer.

General procedure for the formation of trialkylgermylpropanoic acids (3). To a solution of trichlorogermylpropanoic acid (0.04 mol) in absolute ether (50 ml) was

gradually added a solution of methylmagnesium iodide (0.18 mol) in absolute ether (50 ml) at 0 °C under nitrogen with stirring. The reaction mixture was refluxed for 30 min, then cooled, and poured into a dilute hydrochloric acid solution. The ether layer was separated, washed with water, dried over anhydrous MgSO₄, and evaporated to dryness in vacuo. The residue was purified by distillation to give the expected product 3 in 68–80% yields.

3-(Trimethylgermyl)propanoic acid (3a)

B.p. 100 °C/18 Torr. ¹H NMR(CDCl₃, δ ppm): 0.13 (s, 9H, (CH₃)₃Ge), 1.03 (t, 2H, J 8.1 Hz, GeCH₂), 2.43(t, 2H, J 8.1 Hz. CH₂CO), 11.00(s, 1H, COOH). mass spectrum (EI, 70 eV) m/z 192 (M^+). Anal. Found: C, 37.57; H, 7.37; Ge, 37.82. C₆H₁₄GeO₂ calcd.: C, 37.78; H, 7.40; Ge, 38.05%.

3-(Trimethylgermyl)butanoic acid (3b)

B.p. 116°C/4 Torr. ¹H NMR(CDCl₃, δ ppm): 0.12(s, 9H, (CH₃)₃Ge), 1.08(d, 3H, J 6.6 Hz, CHCH₃), 1.47 (m, 1H, GeCH), 2.33(m, 2H, CH₂CO), 12.13(s, 1H, COOH). mass spectrum m/z 206 (M^+).

2-Methyl-3-(trimethylgermyl)propanoic acid (3c)

B.p. 99°C/4Torr. ¹H NMR(CDCl₃, δ ppm): 0.15(s, 9H, (CH₃)₃Ge), 1.00(m, 2H, CH₂), 1.23(d, 3H, J 6.9 Hz, CHCH₃), 2.58(m, 1H, CHCH₃), 12.25(s, 1H, COOH). mass spectrum m/z 206 (M^+).

2-Methyl-3-(trimethylgermyl)propanoic acid (3d)

B.p. $125 \degree C/10$ Torr. ¹H NMR(CDCl₃, δ ppm): 0.15(s, 9H, (CH₃)₃Ge), 1.07(d, 3H, J 6.4 Hz, CHCH₃), 1.20(d, 3H, J 6.4 Hz, CHCH₃), 1.18(m. 1H, CHCH₃), 2.55(m, 1H, CHCH₃), 12.32(s, 1H, COOH). mass spectrum m/z 220 (M^+).

3-Methyl-3-(trimethylgermyl)butanoic acid (3e)

B.p. 130 ° C/15 Torr. ¹H NMR(CDCl₃, δ ppm): 0.10(s, 9H, (CH₃)₃Ge), 1.08(s, 6H, 2 × CH₃), 2.22(s, 2H, CH₂), 11.70(s, 1H, COOH). mass spectrum m/z 220 (M^+).

3-Phenyl-3-(trimethylgermyl)propanoic acid (3f)

M.p. 89–91°C. ¹H NMR(CDCl₃, δ ppm): 0.06(s, 9H, (CH₃)₃Ge), 2.77(s, 1H, CHph), 2.77(s, 2H, CH₂), 7.10(m, 5H, ph), 12.02(s, 1H, COOH). mass spectrum m/z 268 (M^+). Anal. Found: C, 54.01; H, 6.80. C₁₂H₁₈GeO₂ calcd.: C, 53.97; H, 6.64%.

2-Methyl-3-phenyl-3-(trimethylgermyl)propanoic acid (3g)

M.p. 94–95 °C. ¹H NMR(CDCl₃, δ ppm): 0.08(s, 9H, (CH₃)₃Ge), 1.27(d, 3H, J 7.1 Hz, CHCH₃), 2.47(d, 1H, J 10.6 Hz, CHph), 2.97(m, 1H, CHCH₃), 11.68(s, 1H, COOH). mass spectrum m/z 282 (M^+). Anal. Found: C, 55.39; H, 6.95. C₁₃H₂₀GeO₂ calcd.: C, 55.59; H, 7.18%.

3-(Triethylgermyl)propanoic acid (3h)

B.p. 135-137 °C/4 Torr. ¹H NMR(CDCl₃, δ ppm): 0.50-1.20(m, 17H, 3 × C₂H₅ + GeCH₂), 2.37(t, 2H, J 8.1 Hz, CH₂CO), 11.81(s, 1H, COOH). Anal. Found: C, 46.33; H, 8.99. C₉H₂₀GeO₂ calcd.: C, 46.41; H, 8.66%.

Reaction of trialkylgermylpropanoic acids (3) with bromine

Method A: Bromine (0.1 mol) in carbon tetrachloride (100 ml) was added dropwise to a stirred solution of trialkylgermylpropanoic acid (3a-e, and 3h) (0.1 mol) in carbon tetrachloride (50 ml) at 0 °C under nitrogen. The mixture was stirred for 1 or 2 h and then allowed to warm to room temperature. The mixture was evaporated to dryness to afford a crude product. Purification by recrystallization from hexane or by medium pressure liquid chromatography using a hexane/ethyl acetate mixture as the developing solvent gave 3-(bromodialkylgermyl)propanoic acid (4a-e, and 4h) or 4d and 2,3-dibromopropanoic acid (7d). In the case of 3f or 3g, 3-bromocinnamic acid 6f or 6g was obtained as the sole product.

Method B: Bromine (0.3 mol) in carbon tetrachloride (100 ml) was added dropwise to a stirred solution of trialkylgermylpropanoic acid (3c or 3d) (0.1 mol) in carbon tetrachloride (50 ml) at 0 °C under nitrogen. The mixture was stirred for 5 h and worked up as described above, to give 7c or 7d as the sole product. The results are listed in Table 1.

3-(Bromodimethylgermyl)propanoic acid (4a)

M.p. 42-43° C. ¹H NMR(CDCl₃, δ ppm): 0.86(s, 6H, (CH₃)₂Ge), 2.68(t, 2H, J 7.5 Hz, CH₂), 10.70(s, 1H, COOH), 15.20(t, 2H, CH₂). mass spectrum m/z177(M^+ - Br). Anal. Found: C, 23.63; H, 4.47; Br, 31.23. C₅H₁₁BrGeO₂ calcd.: C, 23.49; H, 4.33; Br, 31.26%.

3-(Bromodimethylgermyl)butanoic acid (4b)

M.p. 66–68° C. ¹H NMR(CDCl₃, δ ppm): 0.82(s, 6H. (CH₃)₂Ge), 1.22(d, 3H, J 7.2 Hz, CH₃), 1.78(m, 1H, CH), 2.57(m, 2H, CH₂), 12.07(s, 1H, COOH); mass spectrum m/z 191 (M^+ – Br). Anal. Found: C, 26.58, H, 4.97; Br, 29.40. C₆H₁₃BrGeO₂ calcd.: C, 26.72; H, 4.82; Br, 29.64%.

2-Methyl-3-(bromodimethylgermyl)propanoic acid (4c)

B.p. 150 ° C/18 Torr. ¹H NMR(CDCl₃, δ ppm); 0.85(s, 6H, (CH₃)₂Ge), 1.33(d, 3H, J 7.2 Hz, CH₃), 1.55 (d, 2H, J 7.2 Hz, CH₂), 2.83(m, 1H, CH), 12.00(s, 1H, COOH). mass spectrum m/z 191 (M^+ – Br). Anal. Found: C, 26.58; H, 4.92; Br, 29.36. C₆H₁₃BrGeO₂ calcd.: C, 26.72; H, 4.82; Br, 29.64%.

2-Methyl-3-(bromodimethylgermyl)butanoic acid (4d)

M.p. 120 °C; ¹H NMR(CDCl₃, δ ppm): 0.87(s, 6H, (CH₃)₂Ge), 1.13(d, 3H, J 7.3 Hz, CH₃), 1.25(d, 3H, J 7.2 Hz, CH₃), 1.80(m, 1H, CH), 2.90(m, 1H, CH), 11.80(s, 1H, COOH). mass spectrum m/z 205(M^+ – Br). Anal. Found: C, 29.77; H, 5.39; Br, 27.91. C₇H₁₅BrGeO₂ calcd.: C, 29.64; H, 5.33; Br, 28.17%.

3-Methyl-3-(bromodimethylgermyl)butanoic acid (4e)

M.p. 91–93°C. ¹H NMR(CDCl₃, δ ppm): 0.80(s, 6H, (CH₃)₂Ge), 1.23(s, 6H,

C(CH₃)₂. 2.47(s, 2H, CH₂), 11.97(s, 1H, COOH). mass spectrum m/z 205 ($M^+ -$ Br). Anal. Found: C, 29.67; H, 5.30; Br, 27.92. C₇H₁₅BrGeO₂ calcd.: C, 29.64; H, 5.33; Br, 28.17%.

3-(Bromodiethylgermyl)propanoic acid (4h)

B.p. 165-168°C/5 Torr.. ¹H NMR(CDCl₃, δ ppm): 1.22(s, 10H, GeCH₂CH₃), 1.50(t, 2H, J 8.0 Hz, GeCH₂), 2.64(t, 2H, J 8.0 Hz, CH₂), 12.01(s, 1H, COOH). mass spectrum m/z 205 (M^+ - Br).

General procedure for the formation of germa-y-lactones (8)

To a solution of bromodialkylpropanoic acid (0.01 mol) in carbon tetrachloride (50 ml), was added water (25 ml). The mixture was allowed to stand for 1 h, neutralized with 5% Na₂CO₃ solution and ethyl acetate was added. The combined organic layer was separated, washed with water, dried over anhydrous MgSO₄, and evaporated to dryness in vacuo. The resulting solid was recrystallized from benzene to give the expected product 8 in 68–93% yields. The results are shown in Table 2.

4,4-Dimethyl-4-germa-γ-butyrolactone (8a)

¹H NMR(methanol- d_4 , δ ppm): 0.79(s, 6H, (CH₃)₂Ge), 1.48(t, 2H, J 8.1 Hz, GeCH₂), 2.70(t, 2H, J 8.1 Hz, CH₂CO). Anal. Found: C, 34.14; H, 5.79; Ge, 41.75. C₅H₁₀GeO₂ calcd.: C, 34.37; H, 5.77; Ge, 41.55%.

3,4,4-Trimethyl-4-germa-y-butyrolactone (8b)

¹H NMR(methanol- d_4 , δ ppm): 0.63(s, 6H, (CH₃)₂Ge), 1.20(d, 3H, J 7.5 Hz, CH₃), 1.90(m, 1H, CH), 2.23(d,d, 1H, J 3.0, 8.1 Hz, CH), 2.82(d,d, 1H, J 3.0 8.1 Hz, CH). Anal. Found: C, 38.29; H, 6.38. C₆H₁₂GeO₂ calcd.: C, 38.18; H, 6.41%.

2.4.4.-Trimethyl-4-germa- γ -butyrolactone (8c)

¹H NMR(methanol- d_4 , δ ppm): 0.67(s, 6H, (CH₃)₂Ge), 1.21(d,d, 1H, J 2.0 Hz, 8.1Hz, C³-H), 1.27(d, 3H, J 7.5 Hz, CH₃), 2.70(m, 1H, C²-H). Anal. Found: C, 38.09; H, 6.48. C₆H₁₂GeO₂ calcd.: C, 38.18; H, 6.41%.

2,3,4,4-Tetramethyl-4-germa-y-butyrolactone (8d)

¹H NMR(methanol- d_4 , δ ppm): 0.67(s, 6H, (CH₃)₂Ge), 1.10(d, 3H, J 7.6 Hz, C³-CH₃), 1.22(d, 3H, J 7.3 Hz, C²-CH₃), 1.92(m, 1H, C³-H), 2.80(m, 1H, C²-H). Anal. Found: C, 41.50; H, 7.11. C₇H₁₄GeO₂ calcd.: C, 41.46; H, 6.96%.

3,3,4,4-Tetramethyl-4-germa- γ -butyrolactone (8e)

¹H NMR(methanol- d_4 , δ ppm): 0.67(s, 6H, (CH₃)₂Ge), 1.25(s, 6H, C³(CH₃)₂), 2.47(s, 2H, CH₂CO). Anal. Found: C, 41.36; H, 7.08. C₇H₁₄GeO₂ calcd.: C, 41.46; H, 6.96%.

4,4-Diethyl-4-germa-γ-butyloractone (8h)

¹H NMR(methanol- d_4 , δ ppm): 1.18(s, 10H, CH₃CH₂Ge), 1.48(t, 2H, J 7.0 Hz, GeCH₂), 2.61(t, 2H, J 7.0 Hz, CH₂CO). Anal. Found: C, 41.18; H, 7.10. C₇H₁₄GeO₂ calcd.: C, 41.46; H, 6.96%.

To a solution of 4,4-dimethyl-4-germa- γ -buthyrolactone (**8a**) (3.49 g, 0.02 mol) in absolute ether (50 ml) was gradually added a solution of methylmagnesium bromide (0.02 mol) in absolute THF (30 ml) at 0°C under nitrogen with stirring. The reaction mixture was allowed to stand for 1 h under stirring, and then poured into a dilute hydrochloric acid solution (30 ml). The ether layer was separated, washed with water, dried over anhydrous MgSO₄ and evaporated to dryness in vacuo. The residue was purified by distillation to give 2.9 g (76%) of trimethylgermylpropanoic acid (**3a**) which was found to be identical with an authentic sample.

References

- (a) V. Ravid, R.M. Silverstein, and L.R. Smith, Tetrahedron, 34 (1978) 1449; (b) J. Cardellach, C. Estopa, J. Font, S.M. Moreno-Manas, R.M. Orno, F. Sanchez-Ferrando, S. Valle, and L. Vilamajo, Tetrahedron, 38 (1982) 2377.
- 2 (a) R.E. Damon, and R.H. Schlessinger, Tetrahedron Lett., 19 (1976) 1561; (b) J.L. Herrmann, M.H. Berber, and R.H. Schlessinger, J. Am. Chem. Soc., 101 (1979) 1544; (c) S. Hanessian, R.J. Murray, and S.P. Sahou, Tetrahedron Lett., 26 (1985) 5623, 5627, 5631.
- 3 N. Kakimoto, M. Akiba, and T. Takada, Synthesis, (1985) 272.
- 4 P. Mazerolles, J. Rubac, and M. Lesbre, J. Organomet. Chem., 5 (1966) 35; P. Mazerolles and M. Lesbre, Compt. Rend., 248 (1959) 2018.
- 5 W. Hanstein, H.J. Berwin, T.G. Traylor, J. Am. Chem. Soc., 92 (1970) 829.
- 6 Yu.G. Bundel, N.D. Antonova, and O.A. Reutov, Dokl. Akad. Nauk SSSR, 166 (1966) 1103.
- 7 O.M. Nefedov, S.P. Kolesnikov, and A.I. Ioffe, J. Organomet. Chem. Libr., 5 (1977) 181.